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Abstract
The results of a molecular dynamics study of the supersonic propagation of
femtosecond-energy pulses in a three-dimensional dielectric Ar crystal are
presented. Within the first few picoseconds following pulse excitation, a
significant ballistic contribution to heat transfer is observed which prevents the
system from showing the features of normal heat conduction, i.e. the existence
of finite temperature gradients and the requirement that heat conductivity
be an intensive quantity. It is shown that the ballistic energy-transfer
part exhibits similarities with solitary pulses as studied by G Leibfried and
M Toda independently; they are collisionally stable and the pulse velocity
is proportional to the square root of the tranferred energy. The ballistic
current may thus be considered as a sequence of Leibfried–Toda (LT) solitons
travelling through a dissipative medium. The current decreases with the lattice
temperature and with the distance from the heat source. It may, however,
contribute to heat transfer even at distances roughly 150 lattice constants away
from the excitation site. The ballistic, soliton-like propagation along close-
packed directions is highly directional and hardly compatible with the spherical
symmetry of a Fourier heat current emanating from a point heat source. Radial
and lateral anisotropy of the ballistic heat current is shown to be present during
a time span of several picoseconds. A simplified formula for the ballistic energy
transfer is proposed. Furthermore, we have proven that coherent many-atom
excitation can be devised in such a way that the lifetime of the LT solitons is
enhanced. The conditions to optimize solitary pulse stability are discussed.

1. Introduction

There is growing evidence that heat conduction in micro-size dielectric crystals proceeds
simultaneously via two very different mechanisms: diffusive and ballistic [1–6]. Starting
with the early investigations of Born [7], Debye [8] and Peierls [9], much effort was put into
defining the necessary properties of a system to obey Fourier’s law (diffusive conduction) valid
in macroscopic dielectric solids [1–3, 6–27]. Attention was paid to the role of nonlinearity,
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structural and isotopic disorder as well as dimensionality. As to the latter, it is known
that systems with higher dimensions fulfil the necessary conditions for heat diffusion more
easily [13, 14]. Concerning 1D systems, a series of recent investigations has attempted
to clarify under which conditions Fourier’s law of heat conduction is obeyed [13–23]. It
is well established that the thermal conductivity diverges—in the thermodynamic limit—
in any integrable 1D system. Recently, an important rigorous proof was given by Prosen
and Campbell [15] that for a classical 1D system with arbitrary adjacent site–site interactions,
conservation of total momentum implies anomalous conductivity provided the average pressure
vanishes. Numerical studies of Hu et al [16] and of Hatano [17] clarify that anomalous heat
conductivity in 1D systems is strongly related to the presence of translational invariance. In
contrast, normal thermal conductivity was found in several systems where this symmetry is
broken due to the presence of external on-site potentials (e.g. the ding-a-ling [12], the Frenkel–
Kontorowa [16], and the ding-dong model [18]). The determinant role of an external potential
for normal thermal conduction to occur was recently presented by Hu et al [19] who studied
the φ4 model (exhibiting normal thermal conductivity κ), and the Fermi–Pasta–Ulam model
[10] (where κ diverges). Tsironis et al discussed [20] heat conductivity in a harmonically
coupled chain with three different anharmonic on-site potentials paying particular attention to
the role of breathers. Note, however, the results obtained in [21, 22] showing that absence of
an on-site potential does not necessarily lead to a divergent thermal conductivity. Both groups
of investigators studied a linear chain of coupled rotors. Although momentum is conserved,
the conductivity is finite. This is explained by excitation of stationary localized rotational
modes capable of successively locking and releasing the heat flux in [21] and is traced back
to the occurrence of jumps through barriers in [22].

Since the present paper deals with energy transfer in a perfect crystal, the effect of
disorder on the thermal conductivity will not be discussed here. Instead, we refer to a recent
contribution by Li et al [23], where a list of references relevant for the topic can be found and
in which a numerical study of heat transfer in mass-disordered harmonic and anharmonic 1D
lattices is presented.

Nonlinear and chaotic systems do not guarantee the necessary conditions for normal
thermal conduction to occur [10, 6, 24]. It has been shown in [3] and [6] that in a system
evolving along a chaotic trajectory, diffusive and ballistic heat transport can coexist. This
has been deduced from the size dependence of the thermal conductivity in 1D and 2D chains
interacting, e.g. via Toda, Fibonacci or harmonic+quartic term potentials. The effect is found
if the system extends in the direction of heat propagation over less than 150 crystal sites [3].
Nishiguchi et al [3] have postulated that the anomalous rise of the conductivity in dielectric
crystals found for large temperature gradients is due to KdV solitons. Already Toda [25] had
pointed out that solitons may increase the heat conductivity in dielectric crystals. In regular,
ordered Toda lattices they propagate without any hindrances (dissipation) contributing to
vanishing temperature gradients and infinite conductivity as in linear chains [26]. In disordered
crystals they inhibit heat transfer as they are possibly more robust against the scattering centres
than normal phonon modes.

The anomalous dependence of the heat conductivity on lattice size disappears for larger
systems [3], i.e. the solitons (ballistic current) undergo dissipation. Only when solitons lose
most of their energy at some distance from the warmer end of the lattice, the diffusive part of
the heat current dominates, Fourier’s law of heat transfer is applicable and heat conductivity
becomes an intensive quantity. This dependence on system size (discussed also by Jackson
and Mistriotis [1] in the case of a diatomic Toda lattice), may in some cases be interpreted as a
failure of any system to show normal conductivity. However, we believe that the coexistence
of ballistic and diffusive heat currents is one of the pre-eminent features of most microscale



Ballistic energy transfer in dielectric Ar crystals 4325

systems. At macroscopic size they may reveal normal conductivity. The present paper
concentrates on the microscopic investigation of the ballistic energy transfer in a 3D rare-gas
crystal to a good approximation realistically described by using empirical pair potentials. We
will show that there is a strong ballistic contribution to energy transfer on a microscopic scale.
Later, after a few picoseconds of heat-pulse propagation through the crystal the system slowly
shifts to ‘nearly’ normal conduction.

The nature of the ballistic part of the heat current was studied extensively for the case of
energy transfer emanating from a thermal spike in the bulk. The thermal excitation may be
produced by photodissociation of guest molecules in crystals or nonradiative exciton quenching
in rare-gas solids [34, 4, 38, 5, 27]. The energy, initially localized at a single excited atom
of the crystal, is transferred along close-packed directions [31, 33] in the form of shock
pulses [34, 4]. This ultra-fast (supersonic) and efficient way of energy transfer prevents local
overheating and melting as suggested in [30]. The solitary, nonlinear character of these pulses
was proven in [5]. In real systems ballistic transfer can play a crucial role in microphysical
processes such as cage exit [30], sputtering [31] and cluster collisions [32]. Experiments on
the photodissociation of F2 in a Kr matrix by Kunttu et al [35] or on so-called ‘ballistical
phonons’ created by short laser pulses in crystals [29] also point to the relevance of ballistic
transfer processes.

In the present paper we aim to investigate the solitary character of supersonic energy
pulses, their dissipation in an Ar matrix as well as their relation to heat (energy) transfer. In
section 2 we describe the main features of the models used. Section 3 considers the Toda
and Leibfried solitons and their relation to the process of energy transfer from the ‘thermal
spike’. The dissipation of solitary shock pulses is discussed in section 4 which includes, for
the convenience of the reader, the main results of our previous work [38] discussed in the
light of new data. A simplified formula for ballistic energy (heat) current is proposed and
the applicability of Fourier description is discussed. In section 5 we discuss the dissipation
behaviour of solitary shock pulses in systems with a one-dimensional array of impurity atoms
excited under conditions that differ from those of a thermal spike.

2. Model description

The energy transfer following local excitation was studied by using a molecular dynamics
(MD) procedure based on a Verlet-type algorithm. The equations of motion were solved for
2916 Ar atoms in a cubic box 9 × 9 × 9 a3

Ar (aAr lattice constant of Ar), and 2520 atoms in
a tetragonal box 36 × 7 × 5 R3

e (Re = aAr/
√

2). The pair potential of Azis et al [36] was
chosen.

The crystallographic [110] direction was chosen to be the x-axis in the second case. The
tetragonal box was used to study shock pulse propagation during the first 1.5–2 ps, without
being affected by the periodic boundary conditions. Using the nearest-neighbour distance
Re = 3.7565 of the Ar crystal, we were able to study pulses that traverse a distance of ∼ 68 Å
in the [110] direction of the cubic box and twice as far in tetragonal box before they hit the
boundary.

After initial equilibration at temperatures 1–50 K, an excitation of one atom (or more
atoms) of the sample was performed by abruptly changing its (their) velocity (velocities). The
case of initial excitation in the close-packed [110] direction was investigated most extensively.
The time evolution of the kinetic energy and its equilibration process was studied for the
shells containing all atoms of a perfect matrix that fall in the range (n − 1)Re < r < nRe
For example, the first three shells consist of 12, 42 and 122 atoms, respectively. These shells



4326 A Cenian and H Gabriel

contain larger numbers of atoms than those of the crystallographic shells used in [4] whereby
the strong fluctuations of thermodynamic quantities are widely suppressed.

The results of the 3D-MD calculations have been compared with approximate solutions
of one-dimensional analytical models. It has been shown earlier that some aspects of heat
transfer due to local excitation can be described quite well by a sequence of separate collisions
along one-dimensional chains [4]. The approximate solution for a 1D chain of identical atoms
interacting via a potential of the Born–Mayer type

V = A exp(−x/a) (1)

was given by Leibfried et al [37] in a model describing the energy redistribution in crystals
after neutron scattering.

The transfer of spike energy into the crystalline environment can be derived from the
relations describing the displacement of the nth atom

x0(t) = v0t/2 − a ln
cosh ζ1

cosh ζ0
(2)

xn(t) = v0t1/2 + nRe − a ln
cosh ζn+1

cosh ζn
(3)

ζ0 = v0t1

2a
ζn = v0

2a
(t − nt1) (4)

t1 = 2a

v0
ln

[√
E0/2A exp(−Re/a) +

√
E0/2A exp(−Re/a)− 1

]
(5)

whereE0 = mv2
0/2 is the impact energy of the atom (spike energy), and t1 is the time between

subsequent collisions. The solution represents a compressed longitudinal wave travelling
along the 1D chain and, as was shown earlier [4, 27], properly describes atomic trajectories,
pulse energy propagation as well as the Hugoniot plot, the latter relating ‘pulse shock wave’
and impact-atom velocities in the crystal [4].

3. Nature of ballistic heat current in dielectric crystals

The pulse shock waves transport the major part of the initial impact energy from the position
of the energy spike into the bulk with supersonic velocity [4]. This ballistic energy transfer
exceeds by far the normal heat conductivity in dielectric crystals [27].

As already mentioned above, the Leibfried 1D model properly describes kinetic energy
transfer by shock pulses, but ignores the small dissipation caused by the interaction between
the colliding atom and its neighbours. The transferred shock-pulse energy is thus constant and
given by

Emax = mv2
0 tanh2(v0t1/4a).

The small energy mismatch in the first collision

�E = E0 − Emax =
√

8AE0 exp(−Re/a) (6)

is due to the transfer of kinetic to potential energy of the shock (compression) wave.
The constant energy of the propagating pulse as well as the form of (3) point to the soliton

character of the shock pulse. By replacing
v0t1

2a
↔ κ and

v0

2a
↔ β (7)

equation (3) takes the functional form of the well known ‘Toda kink soliton’ [26]

xn(t) = a ln
cosh ξn−1

cosh ξn
+ constant ξn = (κn + βt). (8)
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The solitary waves carry the energy

ET = aT/bT [sinh(2κ)− 2κ] (9)

where aT and bT are the parameters of the Toda lattice

VT(x) = aT/bT exp(−bT x) + aT x.

As bT is a dimensionless parameter, the lattice spacing is the unit length in the standard Toda
soliton description. In order to enable comparison, the Leibfried and Toda lattice-potentials
were fitted to each other by using the parametrization

AT = aT/bT = A exp(−Re/a) bT = Re/a. (10)

It can be easily shown that the soliton energy (9) is smaller than the Leibfried soliton
energy E0

ET < E0 − AT ln
2E0

AT

if the replacement (7) is used.
Leibfried and Toda 1D solitons carrying the same amount of energy, say E0 = 2 eV,

show slightly different behaviour; see figure 1. A Toda parameter κ̃ is calculated from (9)
with ET = E0 and used to evaluate the second parameter β̃ = √

aTbT/m sinh κ̃ needed to
determine the Toda soliton displacements (8). The main difference between the two kinds of
kink soliton under discussion is given by �y = v0t1, the shift of the initial and final atomic
displacements. This is shown in figure 1(a), where the atomic displacements of the Toda-kink
solitons (broken lines) coincide with the Leibfried kinks (open points and solid line) shifted
downwards by�y (full points). The shift results from the difference in the initial conditions for
both solitons. The Toda chain is compressed during the entire process of soliton propagation
and the total displacement is equal to y−∞ − y∞ = 2κ̃/b for the whole (infinite) lattice. The
Leibfried chain is not compressed and the total displacement is zero. A local displacement
(and local compression in the forward direction) is produced by the initial kinetic excitation
of the central atom. Therefore, the initial position of the nth atom is given by xn(t0) = nRe in
the Leibfried case and by xn(t0) = nRe − 2κ̃/b in the Toda case. On the other hand, atoms
will finally relax to their equilibrium position xn(tf > nt1) = nRe in the Toda lattice, but
are shifted by v0t1 ≈ 2κ̃/b to a new ‘equilibrium position’ in the Leibfried lattice, the latter
resulting from the lack of an attractive part in the Leibfried potential.

The two solitons differ at times longer than t > 7t1 (see figure 1), because in the considered
case of equal excitation energies, ET = E0, relation (7) is only approximately valid. The
parameter κ̃ of the Toda soliton may be estimated from (9)

κ̃ 	 ln
√

2E0/AT (11)

if E0/AT 
 1, i.e. sinh(2κ̃) 
 2κ̃. For a shock pulse of energy E0 = 2 eV in Ar we have
E0/AT ∼ 150 
 1. Under this condition, equation (5) can be simplified to

t1 = 2a/v0 ln
(√

E0/2AT +
√
(E0/2AT) − 1

)
	 a

v0
ln(2E0/AT). (12)

Together with the approximation (11) we arrive at

t1 	 2aκ̃/v0. (13)

This approximate relation for Toda and Leibfried solitons holds very well for a soliton-like
shock pulse propagating through the Ar matrix with energies E0 > 0.5 eV; see figure 1(b).

The velocity of the Toda soliton is given by the relation

cT = β̃/κ̃ (14)
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Figure 1. (a) Atom displacements for a soliton energy E0 = 2 eV at times t1, 4t1 and 7t1;
Leibfried (open points and solid line) and Toda solitons (broken lines); the full points relate to the
shifted Leibfried soliton. (b) The parameters κ̃ calculated from (9) (solid line) and κ = v0t1/2a
(+), respectively; Leibfried and Toda lattice-potentials were fitted to the Ar potential given by Aziz
et al [36], so A = 8144.8 eV and a = 0.2679 Å.

with

β̃ =
√
ATb

2
T/m sinh κ̃ 	 bTv0/2.

By using (13) and (12) both cT and the velocity of Leibfried solitons

cL = Re/t1

obey the same relation

cT,L 	 v0

a/Re ln(2E0/AT)
.

Figure 2 presents the dependence of the compressed (shock) wave velocities versus the
square root of its energy in the three cases under consideration. The exact relation (14) was
used in the case of Toda soliton velocity (solid line). The agreement with velocity of Leibfried
solitons (dotted line) is remarkable and confirms the above approximation. The marked points
(Ar matrix) were obtained as averages over 30 different MD trajectories calculated for collision
sequences initiated by impact energies of 2, 3.5 and 5 eV, respectively. As time evolves the
energy decreases resulting in a series of points each related to the subsequent collision in the
sequence. They all fall on a curve parallel to those found for the Leibfried and Toda lattices.

The observed shift is due to the fact that for the Ar lattice the shock velocity is plotted
against the instantaneous kinetic energy, because in this case the potential energy of the
compressed wave cannot easily be determined. However, if we consider the first collisions
in each sequence, a plot versus the initial energy E0 can be used resulting in a very good
agreement between the 3D-Ar data and those of the 1D lattices. This is illustrated by the three
marked points on the curves related to the Leibfried and Toda solitons. This correspondence
together with the almost linear dependence Vsh = Vsh(

√
E) elucidates the solitary-wave

character of the shock-wave pulse in the 3D-Ar crystal. Moreover, we have shown in [5] that
colliding picosecond-shock waves in Ar crystals are stable objects.

The striking similarities of the energy transfer behaviour of the shock waves observed
in the real 3D system and in the two 1D models originate from the ‘focusing effect’ [33]
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Figure 2. Compressed wave velocities in 3D-Ar (� and +)
and for the 1D lattices according to Toda (solid line) and
Leibfried (dotted line).

referred to in the introduction. The latter results in a selective choice of the [110] direction
(the one with the closest interparticle distance in fcc crystals), along which the propagation of
the ‘solitary shock waves’ is most effective. Moreover, we note that the profile as well as the
velocity of the soliton-like pulses are mainly determined by the repulsive part of the potential
(the only interaction in the Leibfried model). It was left unchanged in all models discussed in
the present paper. The coupling of propagating soliton-like pulses with the surrounding [110]
chains (in 3D) is weak. Considering these stochastically varying interactions as ‘external’ the
situation resembles that discussed by Hu et al [16, 19] in their study of heat conduction in 1D
chains with an external on-site potential. The weak coupling to the surroundings is the source
of soliton-energy dissipation (see section 4), which may even be suppressed by a proper choice
of excitation conditions as discussed in section 5.

4. Ballistic heat (energy) transfer in dissipative media

Dissipation causes a decrease of the soliton energy and diminishes the ballistic contribution
to the heat current [3]. On the other hand, the ballistic contribution increases by enlarging the
temperature gradient [3]. The monatomic lattice with one or (two) initially excited atom(s) is a
special case where the requirements for significant ballistic contribution are well fulfilled. As
examples we refer to photodissociation of matrix-isolated molecules or nonradiative exciton
quenching in rare-gas solids. In both cases the kinetic energies set free by initial excitation can
be fairly high (up to 5 eV) and the ‘thermal’ (kinetic energy) gradients may exceed 104 K Å−1

or 1014 K m−1 in solid Ar.
Firstly, we will study the ballistic heat transport and its time evolution under the favourable

conditions in a pure Ar matrix. The less favourable case, energy transfer initiated by a light
defect atom will be discussed below in section 4.2.

4.1. Energy transfer in monoatomic crystals [4, 38]

It was shown in [4] that very fast energy transfer takes place in a monatomic lattice after local
excitation of an atom (few atoms) in the matrix. The heat (energy) current emanates from the
excitation centre by means of one or more supersonic, solitary pulses along the various [110]



4330 A Cenian and H Gabriel

directions. The number of pulses depends on the initial direction and e.g. equals 1 for initial
excitation in the [110] direction or 4 for excitation close to the [100] direction.

The initial energy (heat) current

J = (E0/Vu)Vsh (15)

(Vu = 37.4 Å3 is the volume of the unit cell) then reaches values J = 12.7 eV Å−2

ps−1 ∼ 2 × 1011 kJ m−2 s−1 for E0 = 5 eV, Vsh ∼ 95.1 Å ps−1. As the pulses move,
their energies gradually dissipate due to interaction with the environment [38].

Figure 3 presents the pulse-energy dissipation for initial excitation in the [110] direction at
energies E0 = 1, 2, 3.5 and 5 eV, respectively. The evolution of the pulse energies for 30 dif-
ferent MD trajectories are marked by different symbols. The solid line connects energy values
averaged over these trajectories; the dashed–dotted curve corresponds to values obtained from
the modified 1D Leibfried model (1D-mLM) presented in [38].
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Figure 3. Pulse energy versus time; excitation along the
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Figure 4. Energy loss per collision for different
excitation energies; sequence of 14 collisions.

The amount of energy transferred to the atoms located next to the propagation path in
each step of the collisional sequence is shown in figure 4. Each point represents an average
over 3D-MD trajectories for each of the 14 collisions in every sequence and for several
excitation energies. The amount of pulse energy dissipated in each collision increases with
its energy in an almost monotonic manner and slowly saturates at 0.14 eV for E0 > 4 eV,
which agrees well with �Ed ∼ 0.12 eV, a value estimated by Cui et al [31]. The dependence
discussed above also matches with the results of the 1D model [38] shown as a solid line
in figure 4. We thus conclude that compressed waves in the 3D-Ar crystal dissipate energy
mainly due to interactions with the four atoms located next to the propagation path (the
closest neighbours of the [110]-chain atoms). In the 2D model there are only two such
atoms and there are none in 1D lattices. Therefore we conclude that a decrease of the lattice
dimension diminishes dissipation and results in a increase of the ballistic contribution to the
heat current.

This can be related to the FPU-chain results of Hu et al [19] according to which the energy
transport mechanism changes from transfer assisted by solitary waves to a diffusive process
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by increasing the on-site potential. This corresponds to the increased number of interacting
neighbouring atoms in the case studied.

Since the modified Leibfried model [37] describes pulse propagation properly, we
suggest a quantitative description of the heat transport by incorporating into the sequence
of independent binary collisions the stepwise dissipation of soliton-like pulses. In the case
where the initial impact is in the [110] direction, the instantaneous ballistic current is given by

J = En/VuVsh(En) (16)

where En, the instantaneous kinetic energy at the nth collision, is calculated by subtracting
from En−1 interactions with lateral atoms as discussed above and displayed in figure 3.

We have shown that the dissipation increases (the ballistic heat current decreases), when
the direction of the initial impact deviates from the [110] direction. The effect is most
pronounced for the first two collisions in the sequence. Later, after a few collisions, the well
known ‘focusing effect’ [33, 37] imposes alignment of the pulse propagation along the [110]
direction (close-packed in fcc crystals).

Raising the matrix temperature disturbs the alignment of collision processes and the
directed transfer of collision energy, thus enhancing the lateral energy dissipation. Therefore
the pulse energy decreases more rapidly at higher temperatures (see figure 5).
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Figure 5. Temperature dependence of pulse-energy dissipation; solid and broken curves connect
averaged energy maxima for a crystal at chosen temperatures.

As illustrated by a selected set of points representing 30 different MD trajectories at 1, 30
and 50 K, we also learn that the dispersion of pulse energies increases at higher temperatures.

Thus, the ballistic contribution to the heat transfer decreases on raising the matrix
temperature, in contrast to the diffusive part. There is a similar temperature dependence
of the thermal conductivity in figure 4 of [19] for the energy transport assisted by the solitary
waves. At low temperature the heat conductivity of dielectric materials usually grows with an
increase of T ; see [28].
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4.2. Energy transfer initiated by a light defect atom

It was argued in [30] that—in the case of energy transfer initiated by a light defect atom—the
ballistic contribution will be suppressed as a result of many chaotic collisions as well as a
reduced energy transfer per collision; both effects enhance the diffusive part of heat transfer.
To clarify whether these assumptions hold true, we studied [27] the energy transfer emerging
from excitation of a light impact atom (m0/MAr = 1/40) in an Ar lattice. We have focused
attention on energy transfer between the impact atom and the host atoms of the first shell,
since beyond this region pulse propagation will proceed according to the picture just given.
The relation between the resulting energy transfer and the normal (Fourier) conductivity law
will now be discussed.
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Figure 6. (a) Time evolution of the light impact-atom energy; (b)–(d) mean kinetic energy of
the atoms in shells n = 1, 2 and 3, respectively; Ar-matrix temperature 1 K (full line) and 30 K
(dashed line).

Figure 6 displays the evolution of kinetic energy (and its mean shell values) for the light
impact atom and the atoms comprised in the first three shells at lattice temperatures 1 and
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30 K and E0 = 2 eV. The collision sequence proceeds along the [110] and [1̄1̄0] directions.
Initially, the excitation energy relaxes slightly faster at temperature T = 30 than at 1 K. At
times t > 0.6 ps, the kinetic energy curves for both temperatures merge at a level of 10% of
E0 (0.2 eV), an energy well above the thermal energy of the crystal; figure 6(a). Figure 6(a)
also shows that the energy transferred in the first two collisions is approximately equal to 0.18
eV, which fits well with the value of 0.19 eV calculated from

�E0 = 4E0 m0MAr/(m0 + MAr)
2. (17)

Equation (17) results from the solution of the modified 1D-Leibfried model (allowing for
different masses of the collision partners):

xn(t) = m0

m0 + MAr
v0t1 + nRe − 2 a

MAr

m0 + MAr
ln

cosh ζn+1

cosh ζn
. (18)

The increase of the energy transfer rate in the third collision (39 < t < 65 fs); see figure 6(a),
is remarkable, especially in comparison to the significant decrease of the impact-atom energy
caused by the previous interactions. This increase of transfer rate is presented in figure 6(b)
as a third shoulder on the kinetic energy pulse of the first-shell atoms. Two smaller shoulders
of an otherwise smooth curve are followed by a significantly larger change of the first-shell
energy, although energy transfer to the second shell has already started (figure 6(c)). This
results from the coherent motion of several [110]-chain atoms as was explained in [27].

We have also studied in which manner the ballistic energy transfer caused by light-
atom excitation is affected by varying the direction of the excitation. We have chosen the
three high-symmetry directions ([110], [111] and [100]) where two, six and eight almost
equi-energetical solitary pulses travelling along equivalent closest-neighbour directions are
excited. In a previous paper [4] we have shown that atoms residing in equilibrium sites at
distances nRe from the excitation centre are more strongly excited than the others. This finding
was independent of the excitation direction, which led us to the conclusion that the solitary
pulses predominantly propagate along the crystallographically equivalent [110] directions.
The symmetry of the system allows us further to state that, e.g. in the case of [100] excitation
four pulses will propagate in the forward and four in the backward longitudinal direction. By
initially exciting along a low-symmetry direction (here [631]) we give preference to one of
those solitary pulses lying closest to the excitation direction by transferring more energy to it.
This widens the spread of generated pulse energies.

Figure 7 shows the energy pulse consisting of many of these solitary pulses propagating
through the first three shells. Ballistic transfer is still present even in the low-symmetry
case. Broadening of the pulse widths together with a slowing down of the pulse velocities
indicate that a growing number of solitons with different velocities is propagated through the
crystal. This is shown in figure 7 for excitation in the [110], [111], [100] and [631] direction,
respectively. The widths of the energy pulses transmitted through the second shell (figure 7(b))
are 0.093 ps (determined at 86.6 K), 0.127 ps (at 81.2 K), 0.156 ps (at 77.5 K) and 0.157 ps (at
73.0 K) for these four directions, respectively. The pulse widths broaden on proceeding from
shell to shell, e.g. for [631] we have 0.117, 0.157 and 0.23 ps for the first, second and third
shell, respectively. The velocity changes are due to dissipation. The pulse velocities in the third
shell are 45.6, 28.8, 26.7 and 24 Å ps−1 (all ±10%) for the excitation directions mentioned
above. We thus conclude that by increasing the number of propagated solitary pulses the
ballistically transferred amount of energy and the transfer velocity is reduced, whereas energy
pulse dispersion gets larger. Moreover, our results show that, in the range where ballistic
energy transfer is significant, the applicability of spherically symmetrical models based only
on diffusive type transport [30] is hardly justified. Since the major part of energy is carried by
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Figure 7. Time evolution of the mean kinetic energy of the first three-shell atoms for various
excitation directions [111], [110], [100] and [631].

one pulse or a few high-energy solitary pulses propagating along the equivalent [110] crystal
directions, the short-time energy propagation reveals a large spatial anisotropy.

5. Means to suppress the ballistic current dissipation

The suppression of soliton energy dissipation is of great theoretical and technical importance.
It was mentioned in section 4.1 that dissipation is caused by the interaction of the colliding
atom with the atoms lying close to the propagation path. This led us to investigate means
of dissipation suppression by introducing modified guest–host interactions and different
excitation conditions. In this context, we first studied solitary pulse propagation along a
close-packed [110] chain of guest atoms of masses M = 131 (Xe) andM = 4 (He) embedded
in an Ar host lattice and found that the energy loss does not depend on the masses of the
impurities significantly.

5.1. Coherent excitation of an atomic complex

In order to study the impact of an extended atomic complex, we have excited coherently
the centre atom A1(0, 0, 0) and its four neighbour atoms B1i (1/2 aAr, 0,±1/2 aAr) and
(0, 1/2 aAr,±1/2 aAr), i = 1, . . . , 4, which lie ahead of A1 as it moves in the [110] direction
of an Ar (fcc) crystal. Figure 8(a) displays the evolution of the kinetic energy of the centre
atom caused by exciting the five-atom complex at energies of 5 × 1.0 and 5 × 3.5 eV. During
the first collision the central chain loses part of its kinetic energy while the potential energy
is enhanced (local compression of the chain). Later, the central chain remarkably regains
almost all of its initial kinetic energy. What is the mechanism underlying the internal energy
exchange between the parallel An and Bni chains?

When the B1i atoms move forward they interact with the atoms of the parallel chains
including the atom A2(1/2 a, 1/2 a, 0) of the central [110] chain. Thus, the coherent motion
of Bi neighbours favours the propagation of energy along the An chain in a twofold way:
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Figure 8. Kinetic energy of central An chain and neighbouring chain atoms Bni ; (a) energy
maxima of the central chain atoms versus time. Complex excitation energies E0 = 5 × 1.0 (+) and
5 × 3.5 eV (�); marks (×) represent the energy maxima for the one-atom excitation at E0 = 3.5
eV; (b) energy exchange between central chain (solid line) and neighbouring chains (broken line),
(c) energy maxima of An chain (+) and of two selected Bni (×,

⊙
) chains versus time.

(i) the A1 atom loses less energy because the closest Bi neighbours move in phase;
(ii) the adjacent A2 with which the A1 atom collides has already gained initial kinetic energy

by interacting with the four B1i neighbours.

The kinetic energy of atom A3 is thus enhanced to a value higher than that of A2; see figure
8(a), an effect which continues to occur in the next few collisions. However, since the An

chain atoms gradually gain energy, the respective pulse propagation velocities increase (they
are proportional to the square root of the soliton energy). Finally, the pulse travelling along
the An chain overtakes the pulses propagating along the Bni chains. Note that the Bni -chain
pulses have already slowed down due to interaction with their closest neighbours. At this
stage the energy dissipation of the An atoms is similar to the case of one-chain excitation (see
curve ‘×’ in figure 8), as the interacting neighbours are now at rest.

The quite rapid energy drop of the central chain atoms results from increased energy
losses to the neighbouring atoms. In the region where 12th to 20th collisions took place, the
slightly smaller energy loss of the Bni atoms is related to the motion of the An atoms now
moving ahead of the Bni atoms. One can expect that the effect will be stronger if other parallel
Ani chains are excited as well. As a result a continuous energy exchange between the Ani

and Bni chains will occur as discussed in section 5.2. In the present case, the exchange is
generally restricted to the initial enhancement of the pulse carried by the An chain. This is
merely due to the fact that the Bni pulses will never again overtake the An pulse. Although
the central chain pulse will slow down as well, the time delay between the pulses carried by
the An and Bni chains increases. This can be seen from figure 8(c), taking into account the
time difference between the points representing energy maximum at the last considered atoms
(n = 36th) in the chains: for central (+) and neighbour chains (× and

⊙
). The A36 atom

reaches its energy maximum about 200 fs before Bi,36. This is equivalent to two collision
times in the given energy region. Therefore central pulse enhancement will not appear again.
The energy remaining in the chains (see figure 8(b)), is still confined in chains and far from the
thermal equilibrium value. Notice, moreover, that the coherence of the motion of the atoms
in neighbouring chains is completely destroyed after 1 ps. Similar results were found, if the
atoms of the primary complex are initially excited at different energies.

We finally conclude that pulse propagation enhancement (dissipation suppression) is
supported in a system where the Ani and Bni chains exchange energy continuously and
similarly to the initial-stage process just described above. Since the border atoms of the excited
complex suffer the largest energy loss, we can expect energy exchange between the chains to



4336 A Cenian and H Gabriel

increase and dissipation to decrease, if the excitation volume is extended. The extreme case
is the excitation of an infinite complex i.e. two planes carrying A1i and B1i atoms.

5.2. Planar excitations

Figure 9 presents the time dependence of the average kinetic energy emerging from [110]-
directed excitation of two adjacent planes of A1i and B1i atoms, respectively. The continuous
energy exchange between ‘solitary plane excitations’ can be observed with dissipation strongly
suppressed. This results from the fact that the dominant dissipation source, namely interaction
with surrounding atoms (interaction with a bath for a solitary pulse) leads now to energy
exchange between the planar excitations. The mechanism was discussed above in section 5.1
with the exception that the energy transfer between planes proceeds in cycles with a period of
about 0.6 ps as shown in figure 9.
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Figure 9. Time evolution of the average kinetic energy per atom; excitation of A (solid curve) and
B (broken curve) planes in [110] direction; the marks + show the evolution of the pulse energy in
(A + B) chains; excitation energy per atom 1.75 eV.

The only contribution to pulse energy loss is the interaction with the chain atoms left
behind the propagating front. Taking into account that during 35 collisions the chain atoms
have dissipated roughly 0.16 eV we have an average loss per collision of 4.6 meV which is
much smaller than for one-atom excitation (∼ 140 meV). Again, the initial drop in kinetic
energy (∼ 0.3 eV per atom) results from kinetic to potential energy transformation.

The importance of energy exchange between the two planes is also made evident in
figure 10, where the kinetic energy evolution produced by one- and two-adjacent plane
excitation with the same total energy is shown. Obviously, the energy dissipation is not
greatly influenced by increasing the number of excited chains (according to figure 10 one-
atom excitation may be even advantageous). However, excitation of the two adjacent planes
suppresses dissipation very effectively.

We conclude that the two-plane excitation allows one to drastically reduce (or even
eliminate) dissipation to the closest-neighbour chains parallel to the [110] directions, whereas
energy loss due to interaction with the atoms left behind the excitation front (usually a less
effective dissipation channel) is not significantly affected. The latter amounts to roughly
10 meV, when the first atom is excited with an energy of 2 eV. It seems that one possible way
to diminish this dissipation channel is to initiate excitation by local compression as in the Toda
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lattice. The post-collision position of the atom is then its lattice equilibrium position without
any vibration, as in our case.

The redistribution of excitation energy between the Ai and Bi chains or coherent excitation
of more than two planes contributes to dissipation suppression less well.

The energy pulses created by two-plane excitation preserve the solitonic character of the
single-atom shock wave, e.g. it is robust against the collision. Figure 11 presents the pulse
energy per chain of two pulses propagating in opposite [110] directions and being started at
adjacent atoms. After collision at time t = 0 the pulses propagate coherently further. Due
to the periodic boundary conditions applied in our MD calculations, they collide (after 1 ps)
and recover again. However, since they propagate through a crystal of higher temperature



4338 A Cenian and H Gabriel

(T ∼ 25 K), they lose their perfect coherence. Dissipation increases significantly in relation
to the time before the second collision.

6. Conclusions

We have shown that the ballistic heat (energy) transfer in solid Ar significantly contributes to
the heat flux emanating from an energy spike generated e.g. by the dissociation of a guest
molecule or by exciton quenching. The ratio of ballistic to diffusive current in the energy
stream decreases along the propagation path and vanishes at distances of the order of 100 Re.
The ballistic heat current is equivalent to a propagating series of femtosecond pulses (pulsed
shock waves) and may be considered as a sequence of Leibfried–Toda (LT) solitons travelling
through the dissipative medium. These shock pulses display all important characteristics of
solitons, i.e. they are collisionally stable and their velocities are proportional to the square
root of the transferred energy (in contrast to phonons).

The ballistic contribution to the heat current decreases with the distance from the excitation
centre because of energy dissipation of the soliton-like pulses. These energy losses increase
with the number of neighbouring atoms met along the propagation path, the latter depending
on the impact direction and system dimension. The energy loss reaches a minimum for 1D
systems as surmised to be the case in [24]. Energy transport along the [110] direction in
the fcc crystal may be treated as 1D energy transfer with an on-site potential created by the
interactions with atoms lying in neighbouring chains. It was shown by Hu et al [16, 19]
that such interactions not only decrease the ballistic contribution but also induce normal heat
conduction in 1D lattices.

The ballistic, soliton-like propagation along close-packed directions of the crystal is highly
directional and hardly compatible with the symmetrical heat transfer emanating from a point
heat source. Energy (heat) propagation lateral to the direction of excitation is much smaller
than that in the radial direction, at least in the ballistic propagation range. The situation is
slightly improved for higher lattice temperatures and for excitations caused by small impact
atoms.

The same features of energy transfer can be expected for all noble gases and other regular
crystals with significantly stronger interactions in the preferred directions. The ballistic
contribution to the heat transfer decreases, however, with the crystal temperature increase
(worse atom alignment along the chosen direction) similarly to the heat conductivity in [19].
In contrast to the diffusive part, the ballistic contribution to heat transfer decreases by increasing
the temperature.

Furthermore, we have proven that coherent many-atom excitation may, if properly devised
contribute to the lifetime increase of the TL-solitons. Excitation of an atom together with
its closest neighbours may increase the pulse propagation range. The method is, however,
energetically inefficient. The situation is even worse in case of one-plane excitation. However,
excitation of two neighbouring planes significantly increases the propagation range of the
solitons. This results from the interaction of the planes and a dissipation decrease at the
solitary wave boundaries. Excitation of three adjacent planes as well as mass-diversification
of the propagating chains do not lead to further suppression of dissipation.

The two-plane excitation allows one to eliminate (or at least drastically reduce) dissipation
to the neighbouring chains in [110] directions. However, it leaves the energy loss which is due
to interaction with the atoms left behind the excitation front unaffected. One possible way to
decrease this dissipation channel is to start the excitation by local compression as in a Toda
lattice.
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